Direct observation of brownian motion of lipids in a membrane.
نویسندگان
چکیده
Nanovid microscopy, which uses 30- to 40-nm colloidal gold probes combined with video-enhanced contrast, can be used to examine random and directed movements of individual molecules in the plasma membrane of living cells. To validate the technique in a model system, the movements of lipid molecules were followed in a supported, planar bilayer containing fluorescein-conjugated phosphatidylethanolamine (Fl-PtdEtn) labeled with 30-nm gold anti-fluorescein (anti-Fl). Multivalent gold probes were prepared by conjugating only anti-Fl to the gold. Paucivalent probes were prepared by mixing an irrelevant antibody with the anti-Fl prior to conjugation. The membrane-bound gold particles moved in random patterns that were indistinguishable from those produced by computer simulations of two-dimensional random motion. The multivalent gold probes had an average lateral diffusion coefficient (D) of 0.26 x 10(-8) cm2/sec, and paucivalent probes had an average D of 0.73 x 10(-8) cm2/sec. Sixteen percent of the multivalent and 50% of the paucivalent probes had values for D in excess of 0.6 x 10(-8) cm2/sec, which, after allowance for stochastic variation, are consistent with the D of 1.3 x 10(-8) cm2/sec measured by fluorescence recovery after photobleaching of Fl-PtdEtn in the planar bilayer. The effect of valency on diffusion suggests that the multivalent gold binds several lipids forming a disk up to 30-40 nm in diameter, resulting in reduced diffusion with respect to the paucivalent gold, which binds one or a very few lipids. Provided the valency of the gold probe is considered in the interpretation of the results. Nanovid microscopy is a valid method for analyzing the movements of single or small groups of molecules within membranes.
منابع مشابه
CFD simulations on natural convection heat transfer of alumina-water nanofluid with Brownian motion effect in a 3-D enclosure
The CFD simulation has been undertaken concerning natural convection heat transfer of a nanofluid in vertical square enclosure, whose dimension, width height length (mm), is 40 40 90, respectively. The nanofluid used in the present study is -water with various volumetric fractions of the alumina nanoparticles ranging from 0-3%. The Rayleigh number is . Fluent v6.3 is used to simulate nanofluid ...
متن کاملEffects of Brownian motion and Thermophoresis on MHD Mixed Convection Stagnation-point Flow of a Nanofluid Toward a Stretching Vertical Sheet in Porous Medium
This article deals with the study of the two-dimensional mixed convection magnetohydrodynamic (MHD) boundary layer of stagnation-point flow over a stretching vertical plate in porous medium filled with a nanofluid. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis in the presence of thermal radiation. The skin-friction coefficient, Nusselt number an...
متن کاملInvestigation of Brownian Motion of CuO-Water Nanofluid in a Porous Cavity with Internal Heat Generation by Using of LTNE Model
In this paper, the effect of the Brownian term in natural convection of CuO-Water nanofluid inside a partially filled porous cavity, with internal heat generation has been studied. It is assumed that the viscosity and thermal conductivity of nanofluid consists of a static part and a Brownian part of which is a function of temperature and the volume fraction of nanofluid. Because of internal hea...
متن کاملThe effect of various conductivity and viscosity models considering Brownian motion on nanofluids mixed convection flow and heat transfer
In this paper the effect of using various models for conductivity and viscosity considering Brownian motion of nanoparticles is investigated. This study is numerically conducted inside a cavity full of Water-Al2O3 nanofluid at the case of mixed convection heat transfer. The effect of some parameters such as the nanoparticle volume fraction, Rayleigh, Richardson and Reynolds numbers has been ex...
متن کاملMixed convection on radiative unsteady Casson ferrofluid flow due to cone with Brownian motion and thermophoresis: A numerical study
In this study, the Brownian motion and thermophoresis effects on the MHD ferrofluid flow over a cone with thermal radiation were discussed. Kerosene with the magnetic nanoparticles (Fe3O4) was considered. A set of transformed governing nonlinear coupled ordinary differential equations were solved numerically using Runge-Kutta based shooting technique. A simulation was performed by mixing ferrou...
متن کاملOn time-dependent neutral stochastic evolution equations with a fractional Brownian motion and infinite delays
In this paper, we consider a class of time-dependent neutral stochastic evolution equations with the infinite delay and a fractional Brownian motion in a Hilbert space. We establish the existence and uniqueness of mild solutions for these equations under non-Lipschitz conditions with Lipschitz conditions being considered as a special case. An example is provided to illustrate the theory
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 88 14 شماره
صفحات -
تاریخ انتشار 1991